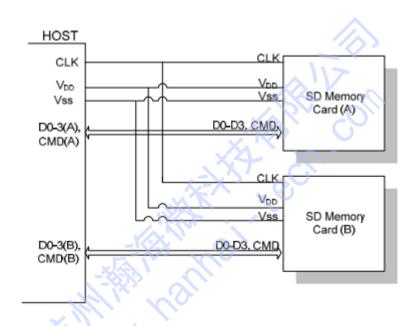
SD NAND 应用之 SD 协议系统功能和概念(2) SPI BUS


总线拓扑结构:

SD 存储卡系统定义了两种可选的通信协议:SD 和 SPI。

主机系统可以选择其中一种模式。

当接收到复位命令时,卡检测主机请求的模式,并期望所有进一步的通信都处于相同的通信模式。不建议使用多个卡槽共用总线信号。单个 SD 总线应连接单个 SD 卡。当主机系统支持高速模式时,单 SD 总线连接单 SD 卡。

默认设置下, SD Memory Card 总线具有一个主(应用程序), 多个从(卡), 同步星型拓扑结构(参考下图)。

图中所示 SD 总线包括以下信号:

时钟:主机到卡时钟信号CMD:双向命令/响应信号DAT0-3:4条双向数据信号。VDD, Vss1, Vss2:电源和地面信号。

在高速和 UHS-I 中,SD 存储卡总线具有单主(应用程序)单从(卡),同步点对点拓扑结构。时钟、电源和接地信号对所有卡都是通用的。命令(CMD)和数据(DATO-DAT3)信号专用于每个卡,为所有卡提供持续的点对点连接。

在初始化过程中,命令被单独发送到每个卡,允许应用程序检测卡并为物理接口或卡座分配逻辑地址。数据总是单独地发送(接收)到(从)每个卡。

但是,为了简单地处理卡栈,在初始化过程之后,所有命令可以并发地发送到所有卡。地址信息在命令包中提供。SD 总线允许动态配置数据线的数量。

开机后,默认情况下,SD存储卡将只使用 DATO 进行数据传输。初始化后,主机可以改变总

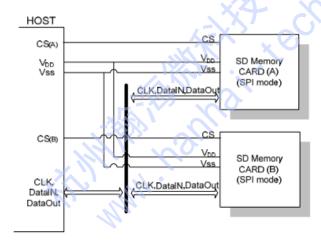
线宽度(活动数据线的数量)。

此功能可以轻松地在硬件成本和系统性能之间进行权衡。注意,当 DAT1-DAT3 没有被使用时,相关的主机的 DAT 行应该被使用。

SPI 总线

SD 存储卡的 SPI 兼容通信模式设计用于与市场上各种微控制器中常见的 SPI 通道通信。接口是上电后第一次复位命令时选择的接口,在部件上电后不能更改。

SPI 标准只定义了物理链路,而不是完整的数据传输协议。SD 存储卡 SPI 实现使用与 SD 模式相同的命令集。从应用程序的角度来看,SPI 模式的优点是能够使用现成的主机,从而将设计工作量降至最低。相对于启用宽总线选项的 SD 模式,缺点是性能损失。


SD Memory Card SPI 接口兼容市面上已有的 SPI 主机。与其他 SPI 设备一样,SD 存储卡 SPI 通道由以下四个信号组成:

CS: 主机到卡芯片选择信号。

时钟: 主机到卡时钟信号

数据: 主机到卡的数据信号。 数据输出:卡到主机的数据信号。

SPI 的另一个共同特征是字节传输,它也在卡中实现。所有数据令牌都是字节的倍数(8 位),并且总是与 CS 信号对齐。

SD Memory Card System (SPI Mode) Bus Topology

卡识别和寻址方法由硬件芯片选择(CS)信号代替。没有广播命令。

对于每个命令,通过断言(active low) CS 信号来选择一个卡(slave)(参见上图)。

CS 信号应在 SPI 事务(命令、响应和数据)期间持续活跃。

唯一的例外发生在卡编程期间,当主机可以取消断言c信号而不影响编程过程时。

SPI 接口使用 SD 总线的 SD 9 信号中的 7 个(DAT1 和 dat2 不使用, DAT3 是 CS 信号)。